
UNIT 4(GRAPH)

Types of graph

1. Directed Graph(unidirectional)

 If a graph contains ordered pair of vertices, is said to be a Directed Graph
or digraph.

 Directed Graph or digraph G= (V, E) Where V is the set of elements called
verities and E is a set of ordered pair of element.

 If an edge is represented using a pair of vertices (V1, V2), the edge is said
to be directed from V1 to V2.

 The first element of the pair V1 is called the start vertex and the second
element of the pair V2 is called the end vertex.

Set of Vertices V = {1, 2, 3, 4, 5}
Set of Edges E = {(1, 3), (1, 5), (2, 1), (2, 3), (2, 4), (3, 4), (4, 5)}

2. Undirected Graph(bidirectional)

 Undirected Graph G= (V, E) Where V is the set of elements called verities and E is a set
of unordered pair of element.

 If a graph contains unordered pair of vertices, is said to be an Undirected Graph.
 In this graph, pair of vertices represents the same edge.

Set of Vertices V = {1, 2, 3, 4, 5}
Set of Edges E = {(1, 2), (1, 3), (1, 5), (2, 1), (2, 3), (2, 4), (3, 4), (4, 5) (3,1) (5,1) (4,2) (3 ,2)}

 In an undirected graph, the nodes are connected by undirected arcs.
 It is an edge that has no arrow. Both the ends of an undirected arc are equivalent.

Note:
 i. Number of possible edges in undirected graph is n (n-1)/2

Undirected graph = n (n-1)/2

=3(3-1)/2=6/2=3 edges
 ii. Number of possible edges in directed graph is n2

Directed graph = n2 (n is no of vertices)
 = 32 =9 edges
3. Weighted graph

 Graphs whose edges or paths have values. All the values seen associated with the
edges are called weights. Edges value can represent weight/cost/length.

 G=(V,E,W)

Weighted undirected graph Weighted directed graph

4. Un weighted Graph

 Where there is no value or weight associated with the edge. By default, all the
graphs are un weighted unless there is a value associated.

5. Cyclic and Acyclic Graphs

A cyclic graph is a directed graph which contains a path from at least one node back to itself. In

simple terms cyclic graphs contain a cycle.

B -> C -> E -> D -> B

An acyclic graph is a directed graph which contains absolutely no cycle, that is no node can be

traversed back to itself.

D->B -> C -> E

Graph representation
Two common data structures for representing graphs:

1. Adjacency matrix
2. Adjacency lists

1. Adjacency Matrix
 Adjacency matrix is a sequential representation.
 It is used to represent which nodes are adjacent to each other. i.e. is there any edge

connecting nodes to a graph.
 In this representation, we have to construct a nxn matrix A. If there is any edge

from a vertex i to vertex j, then the corresponding element of A, ai,j = 1, otherwise
ai,j= 0.

 If there is any weighted graph then instead of 1s and 0s, we can store the weight of
the edge.

Example
Consider the following undirected graph representation:

 Undirected graph representation

 Directed graph representation

 In the above examples, 1 represents an edge from row vertex to column vertex, and
0 represents no edge from row vertex to column vertex.

 Undirected weighted graph representation

Pros: Representation is easier to implement and follow.

Cons: It takes a lot of space and time to visit all the neighbors of a vertex, we have to traverse
all the vertices in the graph, which takes quite some time.

2. Adjacency List
 Adjacency list is a linked representation.
 In this representation, for each vertex in the graph, we maintain the list of its

neighbors. It means, every vertex of the graph contains list of its adjacent vertices.
 We have an array of vertices which is indexed by the vertex number and for each

vertex v, the corresponding array element points to a singly linked list of neighbors
of v.

Example
Let's see the following directed graph representation implemented using linked list:

Pros:

o Adjacency list saves lot of space.

o We can easily insert or delete as we use linked list.

o Such kind of representation is easy to follow and clearly shows the adjacent nodes of

node.

Cons:

o The adjacency list allows testing whether two vertices are adjacent to each other but it

is slower to support this operation.

Graph Traversal

 Graph traversal is a technique used for a searching vertex in a graph.
 The graph traversal is also used to decide the order of vertices is visited in the search

process.
 A graph traversal finds the edges to be used in the search process without creating

loops.
 That means using graph traversal we visit all the vertices of the graph without getting

into looping path.

There are two graph traversal techniques and they are as follows...

1. DFS (Depth First Search)

2. BFS (Breadth First Search)

DFS (Depth First Search)

DFS traversal of a graph produces a spanning tree as final result. Spanning Tree is a graph

without loops. We use Stack data structure with maximum size of total number of vertices in

the graph to implement DFS traversal.

We use the following steps to implement DFS traversal...

Step 1 - Define a Stack of size total number of vertices in the graph.

Step 2 - Select any vertex as starting point for traversal. Visit that vertex and push it on

to the Stack.

Step 3 - Visit any one of the non-visited adjacent vertices of a vertex which is at the top

of stack and push it on to the stack.

Step 4 - Repeat step 3 until there is no new vertex to be visited from the vertex which is

at the top of the stack.

Step 5 - When there is no new vertex to visit then use back tracking and pop one vertex

from the stack.

Step 6 - Repeat steps 3, 4 and 5 until stack becomes Empty.

Step 7 - When stack becomes Empty, then produce final spanning tree by removing

unused edges from the graph

 Back tracking is coming back to the vertex from which we reached the current vertex.

BFS (Breadth First Search)

BFS traversal of a graph produces a spanning tree as final result. Spanning Tree is a graph
without loops. We use Queue data structure with maximum size of total number of vertices in
the graph to implement BFS traversal.

We use the following steps to implement BFS traversal...

Step 1 - Define a Queue of size total number of vertices in the graph.

Step 2 - Select any vertex as starting point for traversal. Visit that vertex and insert it
into the Queue.

Step 3 - Visit all the non-visited adjacent vertices of the vertex which is at front of the
Queue and insert them into the Queue.

Step 4 - When there is no new vertex to be visited from the vertex which is at front of
the Queue then delete that vertex.

Step 5 - Repeat steps 3 and 4 until queue becomes empty.

Step 6 - When queue becomes empty, then produce final spanning tree by removing
unused edges from the graph

H.W

To construct DFS and BFS

Topological Sort

 Topological Sort is a linear ordering of the vertices in a Directed Acyclic Graph(DAG)

such that if there is a path from vi to vj ,then vj appear vi in the ordering.

 Topological Sorting is possible if and only if the graph is a Directed Acyclic Graph.

 There may exist multiple different topological orderings for a given directed acyclic

graph.

Problem-1:

Find the number of different topological orderings possible for the given graph-

Solution-

 The topological orderings of the above graph are found in the following steps-

Step1: Write in-degree of each vertex-

Step-2:
 Vertex-A has the least in-degree.
 So, remove vertex-A and its associated edges.
 Now, update the in-degree of other vertices.

Step-3:
 Vertex-B has the least in-degree.
 So, remove vertex-B and its associated edges.
 Now, update the in-degree of other vertices.

Step-4:

 There are two vertices with the least in-degree. So, following 2 cases are possible-

 Case-1:

 Remove vertex-C and its associated edges.
 Then, update the in-degree of other vertices.

Case-2:

 Remove vertex-D and its associated edges.
 Then, update the in-degree of other vertices.

 Step-5:

 Now, the above two cases are continued separately in the similar manner.

 Case-1

 Remove vertex-D since it has the least in-degree.

 Then, remove the remaining vertex-E.

Case-2:

 Remove vertex-C since it has the least in-degree.

 Then, remove the remaining vertex-E.

 Conclusion

For the given graph, following 2 different topological orderings are possible-

 A B C D E
 A B D C E

Problem-2:

Find the number of different topological orderings possible for the given graph-

Solution

The topological orderings of the above graph are found in the following steps-
Step-1:
 Write in-degree of each vertex-

 Step-2:

 Vertex-1 has the least in-degree.
 So, remove vertex-1 and its associated edges.
 Now, update the in-degree of other vertices.

Step-3:
 There are two vertices with the least in-degree. So, following 2 cases are possible-
case-1

 Remove vertex-2 and its associated edges.
 Then, update the in-degree of other vertices.

 case-2:
 Remove vertex-3 and its associated edges.
 Then, update the in-degree of other vertices.

 Step -4:

Now, the above two cases are continued separately in the similar manner.
 Case-1:

 Remove vertex-3 since it has the least in-degree.
 Then, update the in-degree of other vertices.

 Case-2:
 Remove vertex-2 since it has the least in-degree.
 Then, update the in-degree of other vertices.

Step-5:

Case-1:

 Remove vertex-4 since it has the least in-degree.
 Then, update the in-degree of other vertices.

Case-2:

 Remove vertex-4 since it has the least in-degree.
 Then, update the in-degree of other vertices.

Step-6:

In case-01,

 There are 2 vertices with the least in-degree.
 So, 2 cases are possible.
 Any of the two vertices may be taken first.

Same is with case-02.

Conclusion:
 For the given graph, following 4 different topological orderings are possible-

 1 2 3 4 5 6
 1 2 3 4 6 5
 1 3 2 4 5 6
 1 3 2 4 6 5

Spanning Tree
 A spanning tree is a subset of Graph G, which has all the vertices covered with minimum

possible number of edges.
 Hence, a spanning tree does not have cycles and it cannot be disconnected.
 By this definition, we can draw a conclusion that every connected and undirected Graph

G has at least one spanning tree.
 A disconnected graph does not have any spanning tree, as it cannot be spanned to all its

vertices.

 We found three spanning trees off one complete graph.
 A complete undirected graph can have maximum nn-2 number of spanning trees, where n

is the number of nodes.
 In the above addressed example, n is 3, hence 33−2 = 3 spanning trees are possible.

General Properties of Spanning Tree
 A connected graph G can have more than one spanning tree.

 All possible spanning trees of graph G, have the same number of edges and vertices.

 The spanning tree does not have any cycle (loops).

 Removing one edge from the spanning tree will make the graph disconnected, i.e. the

spanning tree is minimally connected.

 Adding one edge to the spanning tree will create a circuit or loop, i.e. the spanning tree

is maximally acyclic.

Application of Spanning Tree
 Spanning tree is basically used to find a minimum path to connect all nodes in a graph.

Common application of spanning trees are −
o Civil Network Planning

o Computer Network Routing Protocol

o Cluster Analysis

 Let us understand this through a small example.
 Consider, city network as a huge graph and now plans to deploy telephone lines in such

a way that in minimum lines we can connect to all city nodes.
 This is where the spanning tree comes into picture.

Minimum Spanning Tree (MST)
 In a weighted graph, a minimum spanning tree is a spanning tree that has minimum

weight than all other spanning trees of the same graph.
 In real-world situations, this weight can be measured as distance, congestion, traffic

load or any arbitrary value denoted to the edges.

Minimum Spanning-Tree Algorithm
 We shall learn about two most important spanning tree algorithms here −

o Kruskal's Algorithm

o Prim's Algorithm

 Both are greedy algorithms.

Prim's Algorithm
 Prim's Algorithm is used to find the minimum spanning tree from a graph.
 Prim's algorithm finds the subset of edges that includes every vertex of the graph such

that the sum of the weights of the edges can be minimized.
 Prim's algorithm starts with the single node and explores all the adjacent nodes with all

the connecting edges at every step.
 The edges with the minimal weights causing no cycles in the graph got selected.

The algorithm is given as follows.

1. Initialize the minimum spanning tree with a vertex chosen at random.

2. Find all the edges that connect the tree to new vertices, find the minimum and add it to

the tree

3. Keep repeating step 2 until we get a minimum spanning tree

https://www.tutorialspoint.com/data_structures_algorithms/kruskals_spanning_tree_algorithm.htm
https://www.tutorialspoint.com/data_structures_algorithms/prims_spanning_tree_algorithm.htm

EXAMPLE:

SOLUTION:

STEP 1:

STEP 2:

STEP 3:

STEP 4:

STEP 5:

STEP 6:

STEP 7:

FINAL OUTPUT

The cost of MST will be calculated as;

cost(MST) = 4 + 8 + 2+ 1 + 5+2 = 22 units.

Example 2:

Construct a minimum spanning tree of the graph given in the following figure by using prim's

algorithm.

SOLUTION

STEP 1:

STEP 2:

STEP 3:

STEP 4:

STEP 5:

The cost of MST will be calculated as;

cost(MST) = 4 + 2 + 1 + 3 = 10 units.

This is the final output.

Kruskal's Algorithm

 Kruskal's Algorithm is used to find the minimum spanning tree for a connected weighted

graph.

 The main target of the algorithm is to find the subset of edges by using which, we can

traverse every vertex of the graph.

 Kruskal's algorithm follows greedy approach which finds an optimum solution at every

stage instead of focusing on a global optimum.

The Kruskal's algorithm is given as follows.

1. Sort all the edges from low weight to high

2. Take the edge with the lowest weight and add it to the spanning tree. If adding the edge

created a cycle, then reject this edge.

3. Keep adding edges until we reach all vertices.

Example : Apply the Kruskal's algorithm on the graph given as follows.

Step 1 - Remove all loops and Parallel Edges

Remove all loops and parallel edges from the given graph.

In case of parallel edges, keep the one which has the least cost associated and remove all others.

Step 2 - Arrange all edges in their increasing order of weight

The next step is to create a set of edges and weight, and arrange them in an ascending order of weightage (cost).

Step 3 - Add the edge which has the least weightage

Now we start adding edges to the graph beginning from the one which has the least weight. Throughout, we shall
keep checking that the spanning properties remain intact. In case, by adding one edge, the spanning tree property
does not hold then we shall consider not to include the edge in the graph.

The least cost is 2 and edges involved are B,D and D,T. We add them. Adding them does not violate spanning tree
properties, so we continue to our next edge selection.

Next cost is 3, and associated edges are A,C and C,D. We add them again −

Next cost in the table is 4, and we observe that adding it will create a circuit in the graph. –

We ignore it. In the process we shall ignore/avoid all edges that create a circuit.

We observe that edges with cost 5 and 6 also create circuits. We ignore them and move on.

Now we are left with only one node to be added. Between the two least cost edges available 7 and 8, we shall add
the edge with cost 7.

Hence, the final MST is the one which is shown in the step 4.

The cost of MST = 7+3+3+2+2 = 17.

Example 2 : Apply the Kruskal's algorithm on the graph given as follows.

Solution:

The weight of the edges given as :

Edge AE AD AC AB BC CD DE

Weight 5 10 7 1 3 4 2

Sort the edges according to their weights.

Edge AB DE BC CD AE AC AD

Weight 1 2 3 4 5 7 10

Start constructing the tree;

1. Add AB to the MST;

 2. Add DE to the MST;

3. Add BC to the MST;

4. Add CD to the MST;

The next step is to add AE, but we can't add that as it will cause a cycle.

The next edge to be added is AC, but it can't be added as it will cause a cycle.

The next edge to be added is AD, but it can't be added as it will contain a cycle.

Hence, the final MST is the one which is shown in the step 4.

The cost of MST = 1 + 2 + 3 + 4 = 10.

 Both Prim’s and Kruskal’s algorithm finds the Minimum Spanning Tree and

follow the Greedy approach of problem-solving, but there are few major

differences between them.

PRIM’S ALGORITHM KRUSKAL’S ALGORITHM

It starts to build the Minimum Spanning Tree
from any vertex in the graph.

It starts to build the Minimum Spanning Tree
from the vertex carrying minimum weight in
the graph.

It traverses one node more than one time to
get the minimum distance. It traverses one node only once.

Prim’s algorithm has a time complexity of
O(V2), V being the number of vertices and
can be improved up to O(E + log V) using
Fibonacci heaps.

Kruskal’s algorithm’s time complexity is O(E
log V), V being the number of vertices.

Prim’s algorithm gives connected component
as well as it works only on connected graph.

Kruskal’s algorithm can generate
forest(disconnected components) at any
instant as well as it can work on disconnected
components

Prim’s algorithm runs faster in dense graphs.
Kruskal’s algorithm runs faster in sparse
graphs.

3. This process is repeated until reach the end node. Then whichever is the path that path is

called shortest path.

Applications of Graph

 In Computer science graphs are used to represent the flow of computation.

 Google maps uses graphs for building transportation systems, where intersection of

two(or more) roads are considered to be a vertex and the road connecting two vertices is

considered to be an edge, thus their navigation system is based on the algorithm to

calculate the shortest path between two vertices.

 In Facebook, users are considered to be the vertices and if they are friends then there is

an edge running between them. Facebook’s Friend suggestion algorithm uses graph

theory. Facebook is an example of undirected graph.

 In World Wide Web, web pages are considered to be the vertices. There is an edge from

a page u to other page v if there is a link of page v on page u. This is an example

of Directed graph. It was the basic idea behind Google Page Ranking Algorithm.

 In Operating System, we come across the Resource Allocation Graph where each

process and resources are considered to be vertices. Edges are drawn from resources to

the allocated process, or from requesting process to the requested resource. If this leads to

any formation of a cycle then a deadlock will occur.

https://www.geeksforgeeks.org/page-rank-algorithm-implementation/

	1. Directed Graph(unidirectional)
	Set of Vertices V = {1, 2, 3, 4, 5} Set of Edges E = {(1, 3), (1, 5), (2, 1), (2, 3), (2, 4), (3, 4), (4, 5)}
	2. Undirected Graph(bidirectional)
	4. Un weighted Graph
	5. Cyclic and Acyclic Graphs
	Example
	Example

	Graph Traversal
	DFS (Depth First Search)
	BFS (Breadth First Search)
	
	H.W
	To construct DFS and BFS
	
	Topological Sort
	Problem-1:
	Solution-
	Problem-2:
	Step 1 - Remove all loops and Parallel Edges
	Step 2 - Arrange all edges in their increasing order of weight
	Step 3 - Add the edge which has the least weightage

	
	Applications of Graph

