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Types of graph

1. Directed Graph(unidirectional)

. If a graph contains ordered pair of vertices, is said to be a Directed Graph
or digraph.

. Directed Graph or digraph G= (V, E) Where V is the set of elements called
verities and E is a set of ordered pair of element.

. If an edge is represented using a pair of vertices (V3, V), the edge is said
to be directed from V; to V..

. The first element of the pair V; is called the start vertex and the second

element of the pair V, is called the end vertex.

Fig. Directed Graph

Set of Vertices V ={1, 2, 3, 4, 5}
Set of Edges E ={(1, 3), (1, 5), (2, 1), (2, 3), (2, 4), (3, 4), (4, 5)}

2. Undirected Graph(bidirectional)

e Undirected Graph G= (V, E) Where V is the set of elements called verities and E is a set
of unordered pair of element.

e |f a graph contains unordered pair of vertices, is said to be an Undirected Graph.

¢ |nthis graph, pair of vertices represents the same edge.

el TT\\W

(2

Fig. Undirected Graph

Set of Vertices V ={1, 2, 3, 4, 5}
Set of Edges E ={(1, 2), (1, 3), (1, 5), (2, 1), (2, 3), (2, 4), (3, 4), (4, 5) (3,1) (5,1) (4,2) (3,2)}

. In an undirected graph, the nodes are connected by undirected arcs.
o It is an edge that has no arrow. Both the ends of an undirected arc are equivalent.
Note:

i. Number of possible edges in undirected graph is n (n-1)/2

Undirected graph = n (n-1)/2



=3(3-1)/2=6/2=3 edges
ii. Number of possible edges in directed graph is n?

N

Directed graph=n?>  (n is no of vertices)
= 32=9 edges
3. Weighted graph
e Graphs whose edges or paths have values. All the values seen associated with the
edges are called weights. Edges value can represent weight/cost/length.
e G=(V,ElW)

Weighted undirected graph Weighted directed graph

4. Un weighted Graph

e Where there is no value or weight associated with the edge. By default, all the
graphs are un weighted unless there is a value associated.

5. Cyclic and Acyclic Graphs

A cyclic graph is a directed graph which contains a path from at least one node back to itself. In
simple terms cyclic graphs contain a cycle.

ONSG
Q B->C->E->D->B

An acyclic graph is a directed graph which contains absolutely no cycle, that is no node can be
traversed back to itself.

S

D->B->C->E

(D)



Graph representation

Two common data structures for representing graphs:
1. Adjacency matrix
2. Adjacency lists

1. Adjacency Matrix

* Adjacency matrix is a sequential representation.

e |tisused to represent which nodes are adjacent to each other. i.e. is there any edge
connecting nodes to a graph.

¢ |nthis representation, we have to construct a nxn matrix A. If there is any edge
from a vertex i to vertex j, then the corresponding element of A, a;;= 1, otherwise
=i 0.

e |f there is any weighted graph then instead of 1s and Os, we can store the weight of
the edge.

Example
Consider the following undirected graph representation:
e Undirected graph representation

A B C D E
s 3
Al0O 1 1 1 0
B[1 0 0 1 1
>CllJ()ZL(]
D1 1 1 1 1
Ek01010)
)
B C D E
1100-‘
o 0 1 1
0O O 1 0
0O 0 1 1
o 0 0 o

¢ |nthe above examples, 1 represents an edge from row vertex to column vertex, and
0 represents no edge from row vertex to column vertex.
¢ Undirected weighted graph representation

cC D
o 7 8 5 0

Bl 7 o 0o 10 6




Pros: Representation is easier to implement and follow.

Cons: It takes a lot of space and time to visit all the neighbors of a vertex, we have to traverse
all the vertices in the graph, which takes quite some time.

2. Adjacency List
e Adjacency list is a linked representation.
¢ In this representation, for each vertex in the graph, we maintain the list of its
neighbors. It means, every vertex of the graph contains list of its adjacent vertices.
* We have an array of vertices which is indexed by the vertex number and for each
vertex v, the corresponding array element points to a singly linked list of neighbors
of v.

Example
Let's see the following directed graph representation implemented using linked list:

>8] +—>{C1X]
»D| +—>{E <]

——>{A] 3—[0[F—{EIX

4
m|o|a e
|

Pros:
Adjacency list saves lot of space.
We can easily insert or delete as we use linked list.
Such kind of representation is easy to follow and clearly shows the adjacent nodes of
node.
Cons:

0 The adjacency list allows testing whether two vertices are adjacent to each other but it
is slower to support this operation.

Graph Traversal

e Graph traversal is a technique used for a searching vertex in a graph.

e The graph traversal is also used to decide the order of vertices is visited in the search
process.

e A graph traversal finds the edges to be used in the search process without creating
loops.

e That means using graph traversal we visit all the vertices of the graph without getting
into looping path.



There are two graph traversal techniques and they are as follows...

1.

2.

DFS (Depth First Search)

BFS (Breadth First Search)

DFS (Depth First Search)

DFS traversal of a graph produces a spanning tree as final result. Spanning Treeis a graph

without loops. We use Stack data structure with maximum size of total number of vertices in

the graph to implement DFS traversal.

We use the following steps to implement DFS traversal...

Step 1 - Define a Stack of size total number of vertices in the graph.

Step 2 - Select any vertex as starting point for traversal. Visit that vertex and push it on
to the Stack.

Step 3 - Visit any one of the non-visited adjacent vertices of a vertex which is at the top
of stack and push it on to the stack.

Step 4 - Repeat step 3 until there is no new vertex to be visited from the vertex which is
at the top of the stack.

Step 5 - When there is no new vertex to visit then use back tracking and pop one vertex
from the stack.

Step 6 - Repeat steps 3, 4 and 5 until stack becomes Empty.

Step 7 - When stack becomes Empty, then produce final spanning tree by removing

unused edges from the graph

Back tracking is coming back to the vertex from which we reached the current vertex.



Example

Step 1:

Consider the following example graph to perform DFS traversal

- Select the vertex A as starting point (visit A).
- Push A on to the Stack.

Step 2:

- Visit any adjacent vertex of A which is not visited (B).

- Push newly visited vertex B on to the Stack.

Stack

Stack



Step 3:
- Visit any adjacent vertext of B which is not visited (C).
- Push C on to the Stack.

Stack

Stack

Step 4:
- Visit any adjacent vertext of € which is not visited (E).
- Push E on to the Stack

W|A|m

Stack

Step 5:
- Visit any adjacent vertext of E which is not visited (D).
- Push D on to the Stack

WIA|m|O

Stack



Step 6:

- There is no new vertiex to be visited from D. So use back track.
- Pop D from the Stack.

E
C
B
A
Stack
Step 7:
- Visit any adjacent vertex of E which is not visited (F).
- Push F on to the Stack.
F
E
C
B
2}
Stack
Step 8:
- Visit any adjacent vertex of F which is not visited (G).
- Push G on to the Stack. G
F
E
C
B
A

Stack



Step 9:
- There is no new vertiex to be visited from G. So use back track.
- Pop G from the Stack.

Step 10:
- There is no new vertiex to be visited from F. So use back track.
- Pop F from the Stack.

Step 11:
- There is no new vertiex to be visited from E. So use back track.

- Pop E from the Stack.

WiA|jmMm =

Stack

RW|AmMm

Stack

Stack



Step 12:
- There is no new vertiex to be visited from C. So use back track.
- Pop C from the Stack.

Step 13:
- There is no new vertiex to be visited from B. So use back track.
- Pop B from the Stack.

Step 14:
- There is no new vertiex to be visited from A. So use back track.
- Pop A from the Stack.

Stack

Stack

Stack



- Stack became Empty. So stop DFS Treversal.
- Final result of DFS traversal is following spanning tree.

P

BFS (Breadth First Search)

BFS traversal of a graph produces a spanning tree as final result. Spanning Treeis a graph
without loops. We use Queue data structure with maximum size of total number of vertices in
the graph to implement BFS traversal.

We use the following steps to implement BFS traversal...
Step 1 - Define a Queue of size total number of vertices in the graph.

Step 2 - Select any vertex as starting point for traversal. Visit that vertex and insert it
into the Queue.

Step 3 - Visit all the non-visited adjacent vertices of the vertex which is at front of the
Queue and insert them into the Queue.

Step 4 - When there is no new vertex to be visited from the vertex which is at front of
the Queue then delete that vertex.

Step 5 - Repeat steps 3 and 4 until queue becomes empty.

Step 6 - When queue becomes empty, then produce final spanning tree by removing
unused edges from the graph



Example

Consider the following example graph to perform BFS traversal

Step 1:
- Select the vertex A as starting point (visit A).
- Insert A into the Queue.

Queue

Step 2:
- Visit all adjacent vertices of A which are not visited (D, E, B).
- Insert newly visited vertices into the Queue and delete A from the Queue..
Queue
D|E|B
F
Step 3:

- Visit all adjacent vertices of D which are not visited (there is no vertex).
- Delete D from the Queue.

Queue




Step 4:
- Visit all adjacent vertices of E which are not visited (C, F).
- Insert newly visited vertices into the Queue and delete E from the Queue.

Queue

Step 5:
- Visit all adjacent vertices of B which are not visited (there is no vertex).
- Delete B from the Queue.

Queue

Step 6:
- Visit all adjacent vertices of € which are not visited (G).
- Insert newly visited vertex into the Queue and delete C from the Queue.

Queue

Step 7:
- Visit all adjacent vertices of F which are not visited (there is no vertex).
- Delete F from the Queue.

Queue




Step 8: N '
) - Visit all adjacent vertices of G which are not visited (there is no vertex).

- Delete G from the Queue.

Queue

- Queue became Empty. So, stop the BFS process.
- Final result of BFS is a Spanning Tree as shown below...

6.8.3 Depth first search Vs Breadth first search

Depth first search Breadth first search
1. Back tracking is possible from a dead end. 1. Backtracking is not possible.
2. Vertices from which exploration is 2. The vertices to be explored are organi
incomplete are processed in a LIFO order. as a FIFO queue.
) . P T 3. The vertices in the same level
3. Search is done in one particular direction maintained parallely. (left to rig
at the time. (alphabetical ordering)
4. Example : 4.” Example :
Order of traversal Order of traversal
A->B->C5DSE ABCDEFGH




HW
To construct DFS and BFS
ple :

Topological Sort

¢ Topological Sort is a linear ordering of the vertices in a Directed Acyclic Graph(DAG)
such that if there is a path from v; to v; ,then v; appear v; in the ordering.
¢ Topological Sorting is possible if and only if the graph is a Directed Acyclic Graph.
e There may exist multiple different topological orderings for a given directed acyclic
graph.
Example :

A course prerequistic structure is shown as a graph in this example. A directed edge betw

(SSLC, HSS) indicates that course SSLC must be completed before attempting to co
HSS.




A topological ordering of these courses is any course sequence that does not violate the
squistic requirement. The legal topological orderings are:

{i) SSLC, HSS, Arts, Master
{ii)) SSLC, HSS, Science, Master
(iii) SSLC, HSS, Engineering, Master

~{iv) SSLC, Diplomo, Engineering, Master

From the example, it is clear that the ordering is not necessarily unique, any legal ordering
Jid. Topological ordering is not possible if the graph has a cycle, since for two vertices

w on the cycle, v preceedes w and w preceeds v.

Strategy

(i) Find any vertex with no incoming edges (i.e.) indegree = 0. If such vertex found,

print the vertex and remove it along with its edges from the graph.

(ii) Repeat step (i) on the rest of the graph.

Topological Sort

s to perform simple topological sort is:
Assuming that the Indegree array is initialised and the graph is read into an
adjacency list.

The function FindNewVertexOfIndegreeZero scans the indegree array, to find a
vertex with indegree 0, that has not already been assigned a topological number.

(a) It returns NotAVertex if no such vertex exists, that indicates that the graph
has a cycle.
(b) If vertex (v) is returned, the topological number is assigned to v, then the

indegree of vertices (w) adjacent to veriex (v) ar> decremented.

(iii) Repeat step 2 for the rest of the graph.



Problem-1:

Find the number of different topological orderings possible for the given graph-

-
-

Solution-

The topological orderings of the above graph are found in the following steps-

Step1: Write in-degree of each vertex-

Y

Step-2:
® Vertex-A has the least in-degree.
* So, remove vertex-A and its associated edges.
¢ Now, update the in-degree of other vertices.
0



Step-3:
¢ Vertex-B has the least in-degree.
* So, remove vertex-B and its associated edges.
¢ Now, update the in-degree of other vertices.

VQ_.Q

e There are two vertices with the least in-degree. So, following 2 cases are possible-

Step-4:

Case-1:

¢ Remove vertex-C and its associated edges.
¢ Then, update the in-degree of other vertices.

Case-2:

¢ Remove vertex-D and its associated edges.
¢ Then, update the in-degree of other vertices.

Case-01 Case-02
0 0
1 1
Step-5:

¢ Now, the above two cases are continued separately in the similar manner.
Case-1
= Remove vertex-D since it has the least in-degree.

» Then, remove the remaining vertex-E.



Case-2:
*= Remove vertex-C since it has the least in-degree.

» Then, remove the remaining vertex-E.

Case-01 Case-02

O=E~0~0-0 | O--0-0-0

Conclusion

For the given graph, following 2 different topological orderings are possible-

e ABCDE
e ABDCE

Problem-2:

Find the number of different topological orderings possible for the given graph-

Solution

The topological orderings of the above graph are found in the following steps-

Step-1:
Write in-degree of each vertex-
1 2
0 2
1 2

Step-2:



e Vertex-1 has the least in-degree.
* So, remove vertex-1 and its associated edges.
* Now, update the in-degree of other vertices.

0 2

Step-3:
There are two vertices with the least in-degree. So, following 2 cases are possible-
case-1
¢ Remove vertex-2 and its associated edges.
e Then, update the in-degree of other vertices.
case-2:
* Remove vertex-3 and its associated edges.
¢ Then, update the in-degree of other vertices.

Case-01 Case-02

1
1 %: ? 1
0 2

CO—GD CO—OD

Step-4:

Now, the above two cases are continued separately in the similar manner.
Case-1:

¢ Remove vertex-3 since it has the least in-degree.

e Then, update the in-degree of other vertices.
Case-2:

¢ Remove vertex-2 since it has the least in-degree.

¢ Then, update the in-degree of other vertices.



Case-01 Case-02

1 1
0 0 {
1 1
Step-5:
Case-1:

¢ Remove vertex-4 since it has the least in-degree.
e Then, update the in-degree of other vertices.

Case-2:
¢ Remove vertex-4 since it has the least in-degree.

e Then, update the in-degree of other vertices.

© ©
@ @
O—O—O—D | OO~

Step-6:

In case-01,
e There are 2 vertices with the least in-degree.

e S0, 2 cases are possible.
¢ Any of the two vertices may be taken first.

Same is with case-02.



From Case-01 From Case-02

OO~>O~>O~>0-0 | OO0~ 0
O—>O~>O~>O~>0-0 [ OO0

Concdlusion:
For the given graph, following 4 different topological orderings are possible-
e 123456

e 123465
e 132456
e 132465

Spanning Tree

® A spanning tree is a subset of Graph G, which has all the vertices covered with minimum
possible number of edges.

* Hence, a spanning tree does not have cycles and it cannot be disconnected.

e By this definition, we can draw a conclusion that every connected and undirected Graph
G has at least one spanning tree.

¢ Adisconnected graph does not have any spanning tree, as it cannot be spanned to all its
vertices.

Spanning Trees

A A A
\_\ /_\ /_ﬂa
cC — B C B cC ——————— B
St | | S S’ Wt

¢ We found three spanning trees off one complete graph.

¢ A complete undirected graph can have maximum n"2number of spanning trees, where n
is the number of nodes.

* In the above addressed example, n is 3, hence 3*? = 3 spanning trees are possible.



General Properties of Spanning Tree
* A connected graph G can have more than one spanning tree.

e All possible spanning trees of graph G, have the same number of edges and vertices.
* The spanning tree does not have any cycle (loops).
¢ Removing one edge from the spanning tree will make the graph disconnected, i.e. the
spanning tree is minimally connected.
¢ Adding one edge to the spanning tree will create a circuit or loop, i.e. the spanning tree
is maximally acyclic.
Application of Spanning Tree
e Spanning tree is basically used to find a minimum path to connect all nodes in a graph.
Common application of spanning trees are -
0 Civil Network Planning
0 Computer Network Routing Protocol
0 Cluster Analysis
e |Let us understand this through a small example.
e Consider, city network as a huge graph and now plans to deploy telephone lines in such
a way that in minimum lines we can connect to all city nodes.
¢ This is where the spanning tree comes into picture.

Minimum Spanning Tree (MST)
¢ |n a weighted graph, a minimum spanning tree is a spanning tree that has minimum
weight than all other spanning trees of the same graph.
¢ In real-world situations, this weight can be measured as distance, congestion, traffic
load or any arbitrary value denoted to the edges.

Minimum Spanning-Tree Algorithm
e We shall learn about two most important spanning tree algorithms here -
0 Kruskal's Algorithm
0 Prim's Algorithm
e Both are greedy algorithms.

Prim's Algorithm
® Prim's Algorithm is used to find the minimum spanning tree from a graph.
® Prim's algorithm finds the subset of edges that includes every vertex of the graph such
that the sum of the weights of the edges can be minimized.
® Prim's algorithm starts with the single node and explores all the adjacent nodes with all
the connecting edges at every step.
¢ The edges with the minimal weights causing no cycles in the graph got selected.

The algorithm is given as follows.

1. Initialize the minimum spanning tree with a vertex chosen at random.

2. Find all the edges that connect the tree to new vertices, find the minimum and add it to
the tree

3. Keep repeating step 2 until we get a minimum spanning tree


https://www.tutorialspoint.com/data_structures_algorithms/kruskals_spanning_tree_algorithm.htm
https://www.tutorialspoint.com/data_structures_algorithms/prims_spanning_tree_algorithm.htm

EXAMPLE:

@ 9 d 5 @ Connected graph

SOLUTION:

STEP 1:

® ®
YN VN s

@ ° @, |5 ® V\S=ibedefg

h % \ A i?gzh{tist edge = {a,b}

N S={ab!
v 1'\ S = {C)d)eﬁfig}

4| 4 Actian
lightest edge = {b,d}, {a,c}

STEP 3:



w S={a,b,d}

V\S= f
e 9 @ 5 @ {C:re: :g}

ENIZIN i A

V Y / y S:{ajbjcjd}
la ) 9 d ) 5@ VS = {efg]
N ﬁ | 4 Atianhbd e
lightest edge = {c.f}
o 1 @ g g 1c.1}
STEP 5:
10 :
(b ®
V Y / N’ S={a,b.c.d.f}
9 V\S = {eg}

o
9 A={{a,b},{b.d}.{c.d}.{c.f}}
§\ ﬁ \ ﬁ lightest edge = {f,g}




STEP 6:

o 10 ® Step 1.5 after

N S={ab.c,d fg}

) 5 @ V\S={e}
9 A={{a,b},{b,d},{c,d},{c.f},
2 \QA {f.g}}

lightest edge = {f,e}

STEP 7:
(b LA
V Q / N S={ab,cdefg)
o 9 d ] 5 0 VAS={}

RSV VEI R

MST completed

FINAL OUTPUT

The cost of MST will be calculated as;

cost(MST) =4 + 8 + 2+ 1 + 5+2 = 22 units.



Example 2:

Construct a minimum spanning tree of the graph given in the following figure by using prim's
algorithm.

SOLUTION
STEP 1:
I“/B |
-
STEP 2:
P
I\__B,/j
a
|'/-— M\'I-
Sl
STEP 3:
IFB\l
A
4
2

STEP 4:



Falin P
B ) [}
g g
q
2

rali Fallia
D | E |
T i

STEP 5:

The cost of MST will be calculated as;
cost(MST) =4+ 2 + 1+ 3 = 10 units.

This is the final output.

Kruskal's Algorithm

e Kruskal's Algorithm is used to find the minimum spanning tree for a connected weighted
graph.

¢ The main target of the algorithm is to find the subset of edges by using which, we can
traverse every vertex of the graph.

e Kruskal's algorithm follows greedy approach which finds an optimum solution at every
stage instead of focusing on a global optimum.

The Kruskal's algorithm is given as follows.

1. Sort all the edges from low weight to high

2. Take the edge with the lowest weight and add it to the spanning tree. If adding the edge
created a cycle, then reject this edge.

3. Keep adding edges until we reach all vertices.



Example : Apply the Kruskal's algorithm on the graph given as follows.

(A ) B
M e

S L T

T S
c D
L L

Step 1 - Remove all loops and Parallel Edges

Remove all loops and parallel edges from the given graph.

9
A B
S T
— —
c [ D
M o

A B
N’ —

S T
."-\._ a S
c ' D
b _,.-" M

Step 2 - Arrange all edges in their increasing order of weight
The next step is to create a set of edges and weight, and arrange them in an ascending order of weightage (cost).
B,D DT AC GCD | CB B, T AB 5,A 5C

2 2 3 3 4 5 ] 7 8



Step 3 - Add the edge which has the least weightage

Now we start adding edges to the graph beginning from the one which has the least weight. Throughout, we shall
keep checking that the spanning properties remain intact. In case, by adding one edge, the spanning tree property
does not hold then we shall consider not to include the edge in the graph.

L G
s 2 T
| |
/
. C | D
N N

The least cost is 2 and edges involved are B,D and D,T. We add them. Adding them does not violate spanning tree
properties, so we continue to our next edge selection.

Next cost is 3, and associated edges are A,C and C,D. We add them again -

| A B
o R
S 3 2 T
| T
/
, C D
T 3 S

| A B

N’ g
4. : !
? 3 d 2; 1)
L . /‘\,_,,r

o ; 2
| G prmermmeemmmenny D
e 3 \_ ./

| A B
L L
S 3 2 T
| T
/
, C D
T 3 S

We observe that edges with cost 5 and 6 also create circuits. We ignore them and move on.



.:§ O
o

Now we are left with only one node to be added. Between the two least cost edges available 7 and 8, we shall add

the edge with cost 7.

(Cn B
/ i d
5 3 2 T
e L
/
() D
S 3 N

Hence, the final MST is the one which is shown in the step 4.

The cost of MST = 7+3+3+2+2 = 17.

Example 2 : Apply the Kruskal's algorithm on the graph given as follows.

o, 5 .’/f._-\\".
' .' \ E |
; e al
1 10
7 2
| B | [ C | ' D |

Solution:

The weight of the edges given as :

Edge AE AD AC AB BC CD

Weight 5 10 7 1 3 4

Sort the edges according to their weights.

DE



Edge AB DE BC

Weight 1 2 3

Start constructing the tree;

1. Add AB to the MST;

| A
_-'/"
1
.'/" T W
. B )
2. Add DE to the MST
| A | E
p S M
1
2
AT e
| B | . D |

3. Add BC to the MST;

CD

AE

AC

AD

10



4. Add CD to the MST;

[ A =
1
2
£, AT ¥i i
B (c) (D)
e 3 A e

The next step is to add AE, but we can't add that as it will cause a cycle.

The next edge to be added is AC, but it can't be added as it will cause a cycle.

The next edge to be added is AD, but it can't be added as it will contain a cycle.

Hence, the final MST is the one which is shown in the step 4.

The costof MST=1+2+3+4=10.

e Both Prim’s and Kruskal’s algorithm finds the Minimum Spanning Tree and

follow the Greedy approach of problem-solving, but there are few major

differences between them.

PRIM’S ALGORITHM

KRUSKAL’S ALGORITHM

It starts to build the Minimum Spanning Tree
from any vertex in the graph.

It starts to build the Minimum Spanning Tree
from the vertex carrying minimum weight in
the graph.

It traverses one node more than one time to
get the minimum distance.

It traverses one node only once.

Prim’s algorithm has a time complexity of
O(V?), V being the number of vertices and
can be improved up to O(E + log V) using
Fibonacci heaps.

Kruskal’s algorithm’s time complexity is O(E
log V), V being the number of vertices.

Prim’s algorithm gives connected component
as well as it works only on connected graph.

Kruskal’s algorithm can generate
forest(disconnected components) at any
instant as well as it can work on disconnected
components

Prim’s algorithm runs faster in dense graphs.

Kruskal’s algorithm runs faster in sparse
graphs.
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3. This process is repeated until reach the end node. Then whichever is the path that path is
called shortest path.
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Applications of Graph

In Computer science graphs are used to represent the flow of computation.

Google maps uses graphs for building transportation systems, where intersection of
two(or more) roads are considered to be a vertex and the road connecting two vertices is
considered to be an edge, thus their navigation system is based on the algorithm to
calculate the shortest path between two vertices.

In Facebook, users are considered to be the vertices and if they are friends then there is
an edge running between them. Facebook’s Friend suggestion algorithm uses graph
theory. Facebook is an example of undirected graph.

In World Wide Web, web pages are considered to be the vertices. There is an edge from

a page u to other page v if there is a link of page v on page u. This is an example
of Directed graph. It was the basic idea behind Google Page Ranking Algorithm.

In Operating System, we come across the Resource Allocation Graph where each
process and resources are considered to be vertices. Edges are drawn from resources to
the allocated process, or from requesting process to the requested resource. If this leads to

any formation of a cycle then a deadlock will occur.


https://www.geeksforgeeks.org/page-rank-algorithm-implementation/
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